资源类型

期刊论文 133

年份

2023 16

2022 16

2021 13

2020 15

2019 10

2018 6

2017 9

2016 4

2015 3

2014 3

2013 5

2011 5

2010 2

2009 11

2008 5

2007 4

2001 2

2000 1

1999 1

展开 ︾

关键词

4D打印 2

增材制造 2

形状记忆聚合物 2

海上油田 2

聚合物驱 2

BMI树脂 1

Stavax钢 1

买得起复合材料 1

共聚反应 1

内部取代BN 1

凝胶电解质 1

制备方法 1

半导体可靠性 1

协同晶化 1

单壳体结构 1

双向4D打印 1

可逆4D打印 1

合金负极 1

吸附脱硫 1

展开 ︾

检索范围:

排序: 展示方式:

Morphological and mechanical characterization of a PMMA/CdS nanocomposite

Vishal MATHUR, Manasvi DIXIT, K.S. RATHORE, N. S. SAXENA, K.B. SHARMA

《化学科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 258-263 doi: 10.1007/s11705-010-1014-7

摘要: Thick film of poly(methyl methacrylate) (PMMA)/CdS nanocomposite have been synthesized by the solution casting process. The nanostructure of the CdS particles has been ascertained through the small angle X-ray scattering (SAXS) technique. The surface morphological characterization of the PMMA/CdS nanocomposite has been done through scanning electron microscopy (SEM) analysis. The variation of mechanical loss factor (Tan ) with temperature and tensile properties of prepared samples have been studied using Dynamic Mechanical Analyzer (DMA). This study reveals that the glass transition temperature ( ), Young’s modulus, and fracture energy of the PMMA/CdS nanocomposite are greatly influenced by the existence of interfacial energetic interaction between dispersed CdS nanoparticles and the matrix of PMMA.

关键词: poly(methyl methacrylate) (PMMA)     filler nanoparticles     polymer semiconducting nanocomposite     tensile properties     glass transition temperature    

新一代潜在阻燃高分子材料——聚合物/无机物纳米复合材料

欧育湘,吴俊浩,王建荣

《中国工程科学》 2001年 第3卷 第2期   页码 86-90

摘要:

文章综述了一类新型潜在阻燃高分子材料--聚合物/无机物纳米复合材料。简述了这类材料的特征及制备方法,详述了PPgMA(顺丁烯二酸酐接枝聚丙烯)/LS(层状硅酸盐)及PS/LS两种纳米复合材料的阻燃性能,并讨论了材料结构与阻燃性的关系。

关键词: 高聚物     纳米复合材料     阻燃    

Validation of polymer-based nano-iron oxide in further phosphorus removal from bioeffluent: laboratory

Ming HUA, Lili XIAO, Bingcai PAN, Quanxing ZHANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 435-441 doi: 10.1007/s11783-013-0508-1

摘要: The efficient removal of phosphorous from water is an important but challenging task. In this study, we validated the applicability of a new commercially available nanocomposite adsorbent, i.e., a polymer-based hydrated ferric oxide nanocomposite (HFO-201), for the further removal of phosphorous from the bioeffluent discharged from a municipal wastewater treatment plant, and the operating parameters such as the flow rate, temperature and composition of the regenerants were optimized. Laboratory-scale results indicate that phosphorous in real bioeffluent can be effectively removed from 0.92 mg·L to<0.5 mg·L (or even<0.1 mg·L as desired) by the new adsorbent at a flow rate of 50 bed volume (BV) per hour and treatable volume of 3500–4000 BV per run. Phosphorous removal is independent of the ambient temperature in the range of 15°C–40°C. Moreover, the exhausted HFO-201 can be regenerated by a 2% NaOH+ 5% NaCl binary solution for repeated use without significant capacity loss. A scaled-up study further indicated that even though the initial total phosphorus (TP) was as high as 2 mg·L , it could be reduced to<0.5 mg·L , with a working capacity of 4.4–4.8 g·L HFO-201. In general, HFO-201 adsorption is a choice method for the efficient removal of phosphate from biotreated waste effluent.

关键词: bioeffluent     phosphorus removal     nanocomposite adsorbent     hydrated ferric oxide    

Construction of MOFs-based nanocomposite membranes for emerging organic contaminants abatement in water

《环境科学与工程前沿(英文)》 2023年 第17卷 第7期 doi: 10.1007/s11783-023-1689-x

摘要:

● Application of the MOF-composite membranes in adsorption was discussed.

关键词: Emerging organic contaminants     Metal organic frameworks     Synthesis     Adsorption     Catalysis    

Correction to: Highly degradable chitosan-montmorillonite (MMT) nanocomposite hydrogel for controlled

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1704-2

Nanocomposite materials in orthopedic applications

Mostafa R. Shirdar, Nasim Farajpour, Reza Shahbazian-Yassar, Tolou Shokuhfar

《化学科学与工程前沿(英文)》 2019年 第13卷 第1期   页码 1-13 doi: 10.1007/s11705-018-1764-1

摘要:

This chapter is an introduction to nanocomposite materials and its classifications with emphasis on orthopedic application. It covers different types of matrix nanocomposites including ceramics, metal, polymer and natural-based nanocomposites with the main features and applications in the orthopedic. In addition, it presents structure, composition, and biomechanical features of bone as a natural nanocomposite. Finally, it deliberately presents developing methods for nanocomposites bone grafting.

关键词: nanocomposite materials     orthopedic applications     bone grafting nanocomposites     nanocomposites classification    

Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to

Nima Kamali, Abdollah Rashidi Mehrabadi, Maryam Mirabi, Mohammad Ali Zahed

《环境科学与工程前沿(英文)》 2020年 第14卷 第4期 doi: 10.1007/s11783-020-1249-6

摘要: Abstract • Nanocomposites were prepared by adding dolomite to vinasse at different ratio. • Textural and morphological features of adsorbents were studied in detail. • CCD based RSM was used for investigation of P ion removal by nanocomposite. • The qm based on Langmuir model for modified vinasse biochar was 178.57 mg/g. • P loaded nanocomposite improved plant growth and could be utilized as P-fertilizer. The effectiveness of phosphate (P) removal from aqueous solutions was investigated by novel low-cost biochars synthesized from vinasse and functionalized with calcined dolomite. The vinasse-derived biochar, synthesized via pyrolysis at different temperatures, showed easy preparation and a large surface area. The novel vinasse biochar nanocomposites were prepared by adding dolomite to the vinasse biochars with different weight percentages (10, 20 and 30%). The characteristics of the prepared materials were identified for further understanding of the inherent adsorption mechanism between P ions and vinasse biochars. Vinasse-dolomite nanocomposite was very effective in the adsorption of P species from aqueous media. The effect of the operational factors on Vinasse-dolomite nanocomposite was explored by applying response surface methodology (RSM). According to RSM results, the optimum condition was achieved to be contact time 90 (min), 250 (mg/L) of P concentration and pH 7. Thermodynamic isotherm and kinetic studies were applied on experimental data to understand the adsorption behavior. The Vinasse-dolomite nanocomposite revealed preferential P species adsorption in the presence of co-existing anions. The P species could be recovered by 1.0 M HCl where the efficiency was not affected up to the fifth cycle. The P-loaded Vinasse-dolomite nanocomposite was successfully tested on a plant; it significantly improved its growth and proved its potency as a P-based fertilizer substitute.

关键词: Biochar     Vinasse     Dolomite     Phosphate     Fertilizer    

Newly-modeled graphene-based ternary nanocomposite for the magnetophotocatalytic reduction of CO2 with

《化学科学与工程前沿(英文)》 2022年 第16卷 第10期   页码 1438-1459 doi: 10.1007/s11705-022-2166-y

摘要: The development of CO2 into hydrocarbon fuels has emerged as a green method that could help mitigate global warning. The novel structured photocatalyst is a promising material for use in a photocatalytic and magneto-electrochemical method that fosters the reduction of CO2 by suppressing the recombination of electron−hole pairs and effectively transferring the electrons to the surface for the chemical reaction of CO2 reduction. In our study, we have developed a novel-structured AgCuZnS2–graphene–TiO2 to analyze its catalytic activity toward the selective evolution of CO2. The selectivity of each nanocomposite substantially enhanced the activity of the AgCuZnS2–graphene–TiO2 ternary nanocomposite due to the successful interaction, and the selectivity of the final product was improved to a value 3 times higher than that of the pure AgCuZnS2 and 2 times higher than those of AgCuZnS2–graphene and AgCuZnS2–TiO2 under ultra-violet (UV)-light (λ = 254 nm) irradiation in the photocatalytic process. The electrochemical CO2 reduction test was also conducted to analyze the efficacy of the AgCuZnS2–graphene–TiO2 when used as a working electrode in laboratory electrochemical cells. The electrochemical process was conducted under different experimental conditions, such as various scan rates (mV·s–1), under UV-light and with a 0.07 T magnetic-core. The evolution of CO2 substantially improved under UV-light (λ = 254 nm) and with 0.07 T magnetic-core treatment; these improvements were attributed to the facts that the UV-light activated the electron-transfer pathway and the magnetic core controlled the pathway of electron-transmission/prevention to protect it from chaotic electron movement. Among all tested nanocomposites, AgCuZnS2–graphene–TiO2 absorbed the CO2 most strongly and showed the best ability to transfer the electron to reduce the CO2 to methanol. We believe that our newly-modeled ternary nanocomposite opens up new opportunities for the evolution of CO2 to methanol through an electrochemical and photocatalytic process.

关键词: ternary nanocomposite     photocatalytic     electrochemical CO2 reduction     UV-light     magnetic core    

Reduction kinetics of SrFeO/CaO∙MnO nanocomposite as effective oxygen carrier for chemical looping partial

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1726-1734 doi: 10.1007/s11705-022-2188-5

摘要: Chemical looping reforming of methane is a novel and effective approach to convert methane to syngas, in which oxygen transfer is achieved by a redox material. Although lots of efforts have been made to develop high-performance redox materials, a few studies have focused on the redox kinetics. In this work, the kinetics of SrFeO3−δ–CaO∙MnO nanocomposite reduction by methane was investigated both on a thermo-gravimetric analyzer and in a packed-bed microreactor. During the methane reduction, combustion occurs before the partial oxidation and there exists a transition between them. The weight loss due to combustion increases, but the transition region becomes less inconspicuous as the reduction temperature increased. The weight loss associated with the partial oxidation is much larger than that with combustion. The rate of weight loss related to the partial oxidation is well fitted by the Avrami–Erofeyev equation with n = 3 (A3 model) with an activation energy of 59.8 kJ∙mol‒1. The rate law for the partial oxidation includes a solid conversion term whose expression is given by the A3 model and a methane pressure-dependent term represented by a power law. The partial oxidation is half order with respect to methane pressure. The proposed rate law could well predict the reduction kinetics; thus, it may be used to design and/or analyze a chemical looping reforming reactor.

关键词: chemical looping reforming     SrFeO3−δ/CaO·MnO nanocomposite     reduction kinetics     Avrami–Erofeyev model     pressure-dependent term    

Organic conjugated polymers and polymer dots as photocatalysts for hydrogen production

《能源前沿(英文)》 2021年 第15卷 第1期   页码 667-677 doi: 10.1007/s11708-021-0767-7

摘要: Owing to the outstanding characteristics of tailorable electronic and optical properties, semiconducting polymers have attracted considerable attention in recent years. Among them, organic polymer dots process large breadth of potential synthetic diversity are the representative of photocatalysts for hydrogen production, which presents both an opportunity and a challenge. In this mini-review, first, the organic polymer photocatalysts were introduced. Then, recent reports on polymer dots which showed a superior photocatalytic activity and a robust stability under visible-light irradiation, for hydrogen production were summarized. Finally, challenges and outlook on using organic polymer dots-based photocatalysts from hydrogen production were discussed.

关键词: polymer dots (Pdots)     photocatalysis     hydrogen production    

Tuning the primary selective nanochannels of MOF thin-film nanocomposite nanofiltration membranes for

《环境科学与工程前沿(英文)》 2022年 第16卷 第4期 doi: 10.1007/s11783-021-1474-7

摘要:

• PA layer properties tune the primary nanochannels in MIL-101(Cr) TFN NF membranes.

关键词: Porous metal organic framework     Thin-film nanocomposite membrane     Primary selective nanochannels     Nanofiltration     Endocrine disrupting compounds    

Correlative investigation of copper/low-density polyethylene nanocomposite on the endometrial angiogenesis

LI Jianxiong, LIU Zilong, DUAN Yonggang, YU Jing, ZHU Changhong, LI Shuang, XIE Changsheng

《医学前沿(英文)》 2007年 第1卷 第4期   页码 401-404 doi: 10.1007/s11684-007-0078-3

摘要: The purpose of this study was to investigate the effects of copper/low-density polyethylene nanocomposite (nano-Cu/LDPE) on the endometrial angiogenesis in rats, and 100 sexual mature female SD rats were randomly divided into five groups: sham-operation groups (SO group, = 20), bulk copper groups (Cu group, = 20), LDPE groups ( = 20), nano-Cu/LDPE groups I ( = 20) and II ( = 20). The levels of angiopoietin-2 (Ang-2), its receptor (Tie-2) and CD34 of the rats endometria in each group were examined by using the S-P method of the immunohistochemistry 30 and 180 days after insertion, respectively. Compared with those in the SO group, the expression of Ang-2 and Tie-2 in all the experimental groups was obviously increased 30 days after insertion, and these parameters in nano-Cu/LDPE groups, except for Ang-2 level in nano-Cu/LDPE group II, were significantly lower in comparison with those in Cu group (<0.05). On the 180th day after insertion, Ang-2 and Tie-2 levels were still higher in Cu group and LDPE group, but there was no difference of Ang-2 and Tie-2 levels between nano-Cu/LDPE groups and the SO group (>0.05). Compared with those in the SO group, the significant increases in microvessel density (MVD) were observed on the 30th and the 180th day after the insertion of the bulk copper (<0.05). There was no significant difference in MVD counts before and after the insertion of nano-Cu/LDPE (>0.05). The results show that Nano-Cu/LDPE have slighter influence on the endometrial angiogenesis than bulk copper.

关键词: significant difference     female     endometrial angiogenesis     nano-Cu/LDPE     CD34    

Construction of interfacial dynamic bonds for high performance lignin/polymer biocomposites

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1372-1388 doi: 10.1007/s11705-023-2302-3

摘要: Lignin is the largest natural aromatic biopolymer, but usually treated as industrial biomass waste. The development of lignin/polymer biocomposites can promote the high value utilization of lignin and the greening of polymers. However, the weak interfacial interaction between industrial lignin and polymer induces poor compatibility and serious agglomeration in polymer owing to the strong intermolecular force of lignin. As such, it is extremely difficult to prepare high performance lignin/polymer biocomposites. Recently, we proposed the strategy of in situ construction of interfacial dynamic bonds in lignin/polymer composites. By taking advantage of the abundant oxygen-containing polar groups of lignin, we inserted dynamic bonding connection such as hydrogen bonds and coordination bonds into the interphase between lignin and the polymer matrix to improve the interfacial interactions. Meanwhile, the natural amphiphilic structure characteristics of lignin were utilized to construct the hierarchical nanophase separation structure in lignin/polymer composites. The persistent problems of poor dispersity and interfacial compatibility of lignin in the polymer matrix were effectively solved. The lignin-modified polymer composites achieved simultaneously enhanced strength and toughness. This concise review systematically summarized the recent research progress of our group toward building high-performance lignin/polymer biocomposites through the design of interfacial dynamic bonds (hydrogen bonds, coordination bonds, and dynamic covalent bonds) between lignin and different polymer systems (polar plastics, rubber, polyurethane, hydrogels, and other polymers). Finally, the future development direction, main challenges, and potential solutions of lignin application in polymers were presented.

关键词: lignin     polymer     interfacial dynamic bonds    

Erratum to: Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-021-1387-5

Effect of polymer structures on electro-optical properties of polymer stabilized liquid crystal films

WANG Shoulian, HE Jie, ZENG Yu, YAN Bin, WANG Yinghan

《化学科学与工程前沿(英文)》 2008年 第2卷 第3期   页码 265-268 doi: 10.1007/s11705-008-0054-8

摘要: The polymer stabilized liquid crystal (PSLC) film is a relatively novel electro-optical material, which is generally obtained by dissolving a small amount of a bifunctional photoreactive monomer in a low molecular mass liquid crystal. In this paper, the PSLC films were prepared with photoreactive biphenyl methacrylate monomers by photopolymerization induced phase separation. The effects of liquid crystal concentration, curing time, monomer structures and alignment layer on the electro-optical properties of PSLC films were investigated. The results show that the transmittance in the OFF state () increased with the liquid crystal concentration, but the driving voltage decreased. was also influenced by the curing time. Furthermore, when polyimide was used as alignment layer, the films prepared from the bifunctional monomer shows a higher T, while those from the single functional monomer exhibited a deformed electro-optical curve due to the unsteady polymer networks.

标题 作者 时间 类型 操作

Morphological and mechanical characterization of a PMMA/CdS nanocomposite

Vishal MATHUR, Manasvi DIXIT, K.S. RATHORE, N. S. SAXENA, K.B. SHARMA

期刊论文

新一代潜在阻燃高分子材料——聚合物/无机物纳米复合材料

欧育湘,吴俊浩,王建荣

期刊论文

Validation of polymer-based nano-iron oxide in further phosphorus removal from bioeffluent: laboratory

Ming HUA, Lili XIAO, Bingcai PAN, Quanxing ZHANG

期刊论文

Construction of MOFs-based nanocomposite membranes for emerging organic contaminants abatement in water

期刊论文

Correction to: Highly degradable chitosan-montmorillonite (MMT) nanocomposite hydrogel for controlled

期刊论文

Nanocomposite materials in orthopedic applications

Mostafa R. Shirdar, Nasim Farajpour, Reza Shahbazian-Yassar, Tolou Shokuhfar

期刊论文

Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to

Nima Kamali, Abdollah Rashidi Mehrabadi, Maryam Mirabi, Mohammad Ali Zahed

期刊论文

Newly-modeled graphene-based ternary nanocomposite for the magnetophotocatalytic reduction of CO2 with

期刊论文

Reduction kinetics of SrFeO/CaO∙MnO nanocomposite as effective oxygen carrier for chemical looping partial

期刊论文

Organic conjugated polymers and polymer dots as photocatalysts for hydrogen production

期刊论文

Tuning the primary selective nanochannels of MOF thin-film nanocomposite nanofiltration membranes for

期刊论文

Correlative investigation of copper/low-density polyethylene nanocomposite on the endometrial angiogenesis

LI Jianxiong, LIU Zilong, DUAN Yonggang, YU Jing, ZHU Changhong, LI Shuang, XIE Changsheng

期刊论文

Construction of interfacial dynamic bonds for high performance lignin/polymer biocomposites

期刊论文

Erratum to: Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization

期刊论文

Effect of polymer structures on electro-optical properties of polymer stabilized liquid crystal films

WANG Shoulian, HE Jie, ZENG Yu, YAN Bin, WANG Yinghan

期刊论文